
Revue Internationale du Chercheur
www.revuechercheur.com
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1349

Optimization by design patterns and static analysis of web
applications for a sharp adaptation of e-business start-ups in the

city of Lubumbashi in DR Congo (Nesher)

Optimisation par les patrons de conception et l'analyse statique
des applications web pour une adaptation pointue des start-ups de
commerce électronique dans la ville de Lubumbashi en RD Congo

(Nesher)

FYAMA Blaise
Teacher researcher - Dean of Faculty

Faculty of Computer Sciences
Université Protestante de Lubumbashi(UPL)

Department of Information systems engineering
Democratic Republic of Congo

bfyama@gmail.com

KADIATA Freddy
PhD student

Faculty of Computer Sciences
Université Protestante de Lubumbashi(UPL)

Department of Information systems engineering
Democratic Republic of Congo
freddyilunga94@gmail.com

Date de soumission : 14/06/2021
Date d’acceptation : 19/08/2021
Pour citer cet article :
FYAMA. B & KADIATA. F (2021) “Optimization by design patterns and static analysis of web applications for

a sharp adaptation of e-business start-ups in the city of Lubumbashi in DR Congo (Nesher)”, Revue Internationale

du Chercheur “Volume 2: Numéro 3" pp: 10349 - 1372

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1350

Abstract

Due to some limitations of imperative development approaches, in recent years, many

companies have introduced object-oriented technology into their software developments. The

component paradigm, which advocates the assembly of autonomous and reusable software

bricks, is indeed an interesting proposition for reducing development and maintenance costs

while increasing the quality of applications.

Whatever development paradigm we find ourselves in, it is essential for architects and

developers alike to assess what they produce in order to produce software capable of meeting

user needs, which is why we propose in this article article an approach based on the static

analysis of the software and the use of some software engineering model such as the design

pattern of which we note the notable impact of the latter on the regulation of certain metric

parameters to acceptable thresholds and thus optimize the internal and external quality of the

software.

Keywords: Software optimization; quality metrics; Chidamber and Kemerer; Model-driven

engineering; Design Patterns

Résumé

En raison de certaines limites des approches de développement impératif, ces dernières années,

de nombreuses entreprises ont introduit la technologie orientée objet dans leurs développements

logiciels. Le paradigme des composants, qui préconise l'assemblage de briques logicielles

autonomes et réutilisables, est en effet une proposition intéressante pour réduire les coûts de

développement et de maintenance tout en augmentant la qualité des applications.

Quel que soit le paradigme de développement dans lequel nous nous trouvons, il est essentiel

pour les architectes comme pour les développeurs d'évaluer ce qu'ils produisent afin de réaliser

des logiciels capables de répondre aux besoins des utilisateurs, c'est pourquoi nous proposons

dans cet article une approche basée sur l'analyse statique du logiciel et l'utilisation d'un certain

modèle de génie logiciel tel que le design pattern dont nous notons l'impact notable de ce dernier

sur la régulation de certains paramètres métriques à des seuils acceptables et ainsi optimiser la

qualité interne et externe du logiciel.

Mots-clés : Optimisation du logiciel ; métriques de qualité ; Chidamber et Kemerer ; Ingénierie

dirigée par les modèles ; Design Patterns.

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1351

Introduction

In recent years, many companies have introduced object oriented technology in their software

development. The component paradigm, which advocates the assembly of autonomous and

reusable software bricks, is indeed an interesting proposition for reducing development and

maintenance costs while increasing the quality of applications.

In the object paradigm, as in all the others, architects and developers must be able to assess the

quality of what they produce as early as possible, especially throughout the design and coding

process. quality is understood as software capable of perfectly meeting customer expectations,

all without execution flaw. Thus, software quality is determined as a set of rules and principles

to be followed during the development of an application in order to design software that meets

these expectations.

Metrics on the code are essential tools, to do this they make it possible, to a certain extent, to

predict the “external” quality of a software or an architecture being coded. Various proposals

for metrics have been made in the literature.

Unfortunately, none of the proposed metrics has been the subject of a serious study as to their

completeness, their cohesion and especially as to their ability to predict the external quality of

the developed artefacts.

Worse still, the lack of support for these metrics by the code analysis tools on the market makes

their industrial use impossible. As it stands, the quantitative and “a priori” prediction of the

quality of their developments is impossible. There is therefore a significant risk of an increase

in costs following the late discovery of defects.

In the context of this article, we offer a pragmatic answer to this problem. Starting from the

observation that a large part of industrial frameworks are based on object-oriented technology,

we have studied the possibility of using some of the "classic" code metrics, not specific to the

object-oriented world, to evaluate oriented applications. object. Indeed, these metrics have the

advantage of being well defined, known, equipped and above all of having been the subject of

numerous empirical validations analyzing the power of prediction for imperative codes or

objects.

Among the existing metrics, we have identified a subset of them which, by being interpreted

and applying at certain levels of granularity, can potentially give indications on the respect by

the developers and the architects of the main principles. software engineering, in particular on

coupling and cohesion.

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1352

These two principles are indeed at the very origin of the component paradigm in the object-

oriented world.

This series of metrics, identified by hand, was then applied to a home-made application in order

to ensure, through a study and analysis by software metrology, that it effectively conveyed

relevant information to the object-oriented world.

The big problem for developers on the a priori prediction of the quality of their development is

a highly risky bet with the consequence of an increase in costs following the late discovery of

defects. En state quality control in the object, imperative, component paradigm is difficult to

perform.

Faced with this lack of consensus, hindsight and tools for dedicated metrics, what can we do?

The objective of this article was to propose a pragmatic answer to this problem to ensure the

quality of the software from the conception until its evolution. We first noted that a large part

of the current industrial frameworks for application development are based on object-oriented

technology. The paragon of this approach is the component model, designed on a Java layer.

The question we asked ourselves was then the following: is it possible and relevant to rely on

certain existing code metrics, well-known and even more widely equipped to study the quality

of components and architectures of object-oriented software? is it possible and relevant to use

the model-based approach (design pattern) to produce quality software and solve the problem

of software aging? Our research responds positively to this question and even demonstrates

that, indeed, certain metrics, not specific to the object, component or imperative world, can

prove to be valuable both at the level of the component (for the developer) and at the level of

the 'application (for the architect).

Thus, the values obtained from these metrics become valid indicators on the choice or not of a

development style, design patterns have remained by far a better choice, we will try to

demonstrate how, in the rest of this document.

The metrics by being interpreted and by applying to certain levels of granularity give indications

on the respect by the developers and the architects of the main principles of software

engineering, in particular on the coupling and the cohesion. These two principles are at the very

origin of the component paradigm in the object-oriented. This is why they are used as main

optimization criteria by the work on the restructuring of object-oriented applications into

component-oriented applications.

We followed the software engineering methodology which includes several transversal

methods:

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1353

1. The software performance method

2. The reliability engineering method

3. The safety engineering method

All these methods were considered in a quantitative approach to show through a static analysis

the internal external performances of the software.

We first had to try to identify a “minimal core” of a few metrics that could potentially serve as

“complete systems” of internal measurement. A suite of metrics able to represent all the facets

of an object-oriented application: internal view, interface and compositional. For this, it was

necessary to extract dozens of existing metrics those capable, for a certain level of granularity,

of translating “something” on these 3 facets and on the object-oriented design principles

followed by the developer or the architect. This hand-identified series of metrics was then

applied to our application (Nesher) in order to ensure through a study of the distributions that

it actually conveyed relevant information to the object world. This study,

Finally, the use of a test tool was used, and it is an essential examination because it allowed to

a large extent to bring out certain parameters of our application which undoubtedly would not

be done easily by hand.

All these steps were carried out to conclude on the “practical” interest of using common and

well-equipped metrics to measure the quality of applications in the object-oriented world as

early as possible and to propose good design practices to regulate values. obtained from these

metrics.

We are not the first or even the only one to speak of software metrology of applications oriented

object by metrics to examine the design flaws, other authors long before us have also spoken

about it, among these works we have put the hand on the thesis of Stéphanie GAUDAN

presented to the National Institute of Applied Sciences of Toulouse for obtaining the title of

DOCTOR in 2007.

In her thesis entitled, `` Management of the risks of design faults linked to object-oriented

technologies for their use in critical avionics applications '', she identifies the risks of design

faults and their risks, then she successively used Bayesian networks and new metrics to estimate

the risk level of design faults in object-oriented applications, it ends with an experimentation

of these metrics on an avionics system (GAUDAN, 2007).

As far as we are concerned, we do not manage the risks of design faults but rather an analysis

by software metrology on a home-made object-oriented application, by the application of

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1354

Chidamber and Kemerer metrics and offer good design practices. making it possible to obtain

satisfactory values of these metrics and thus significantly increase the quality, both internal and

external, of the software.

In the two points we first present the optimization of Nesher by the use of design patterns then

we end by giving the results of the static analysis of our software.

1. Result of the static analysis carried out on Nesher

As we said at the very beginning, we have designed a homemade software that we call Nesher,

designed in Java SE language and Java FX.

This part will examine the possibility of using certain metrics certain from the procedural and

object world in the object oriented paradigm. This possibility is considered in this part

according to two criteria of a rather <<syntactic>> nature. At this level, it will not only be a

question of determining whether such or such a metric has a relevant <<sense>> in terms of

quality or not, but of verifying whether it is calculable and potentially carrying discriminating

information and structurally relevant.

The process of identifying candidate metrics relied on double filtering. The purpose of the first

filter is to say whether for a given metric a calculation is possible in the object world by fixing,

when possible and / or necessary, a potentially relevant level of granularity. Indeed, some

metrics offer a level of genericity allowing their applications at different levels of granularity

(classes, packages, components). The point is to choose a level of granularity that is potentially

useful and revealing in the object world.

1.1. Identification of standard metrics that can be used in the OO

The metrics used must be able to help two types of actors, namely developers (sometimes

independently of the application context) and architects (who assemble the different modules

and components to design the application). In a first subsection, we will analyze this need and

highlight the need to approach measurement from 3 points of view: a) the internal structure of

a package or a class, b) its "surface" external (its interface), c) the relationships between the

internal components of an application (class or package). The following subsections will then

list in a table the metrics of the procedural world and exploitable object that we had retained

for each of these three points of view. (Sylvain Chardigny, 2008).

1.2. Choice of granularity of measures and points of view

In the object-oriented paradigm an application is generally structured as follows:

• An application is divided into components that interact through required and

provided interfaces;

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1355

• A component can be structurally broken down into one or more packages;

• A package may in turn be divided into one or more classes;

• A class is conventionally composed of one or more fields (attributes and / or

methods).

Researchers in the field of restructuring rely on metrics of granularity greater than or equal to

that of the class. A class is for them a structural unit of the "black box" type. Only the

dependencies maintained by the classes to determine the components to build count. (Hamza,

2014). In our case, we have not adopted this approach. Of the dozens of existing metrics, we

have selected metrics having not only the class as the minimum level of granularity, but those

which also take into account the internal class structure (methods and properties).

Thus, the metrics associated with internal phenomena to the class such as the cohesion of the

class (i.e. the coupling between the methods), the number of methods, the number of properties,

the cyclomatic complexity, etc. are taken into consideration in our study.
TABLE NO.1: STATIC ANALYSIS OF NESHER GES-PAYS WITH THE METRICS TOOL

No. Metric Meaning Average

value

Interpretation

1 SLOC Number of lines of code 12818 According to COCOMO Nesher is an

intermediate level project (W, 1981)

This classification could make it possible

to estimate the number of developers, the

time and their efforts required for such a

project.

2 Cyclomatic

complexity

Measure the number of

linearly possible paths in a

function

1,487 This value is the average of the whole

project, 2 methods out of 1211 exceed the

admissible value of 10, with one 11 and

another 12, or around 0.16%. What is

acceptable (McCabe, 1976) (MENGAL,

2013).

3 Afferent coupling number of references to the

measured class

8.319 The admissible threshold is 10, the

average value obtained proves a good

reuse code in Nesher (MENGAL, 2013).

4 Efferent coupling measure of the number of

types that the class

<<knows>>

2,574 This low value proves that Nesher

respects the principle of single

responsibility, only one package out of 47

exceeds the value of 20, which is a

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1356

threshold proposed by the RefactorIT

(Larive, 2015)

5 Lack of Cohesion
Of Methods
(LCOM)

Level of cohesion in a class 0.391 Also directly linked to the principle of

single responsibility, Nesher's LCOM

demonstrates a strong capacity for code

reuse, ease of testability and above all a

strong capacity for maintainability. As

argue (MENGAL, 2013) (Goodman,

2013) (Smacchia, 2013) (Kemerer,

1994).

6 Specialization
Index

Degree of specialization of a

class

0.004 This value of 0.004 simply means that our

classes do not redefine the methods of the

classes they inherit too much, so the

depth of inheritance is low and

negligible. (Larive, 2015).

7 Instability Instability of a module 0.452 Varying between 0 and 1, the values

approaching 0 attest a strong extensibility

of the code, Nesher is found in an

appreciable value (Larive, 2015)

(MENGAL, 2013).

8 Abstractnesse Abstraction level of a module

compared to other classes

present in the code

0.131 Between 0 and 1, the closer it to 0 the

better, it shows that most of our classes

are concrete (Larive, 2015) (MENGAL,

2013).

9 Distance form

main sequence

The balance of the modulus

between abstraction and

instability

- 0, 417 Our sequence hand axis touches the two

points described on the reference model

and thus reflects a certain respect for

design rules (Martin, 2000) (Smacchia,

2013).

10 depth of

inheritence tree

(DIT)

distance between a class and

the root in its inheritance tree

2.312 In the inheritance tree, our classes do not

descend beyond the second level, which

indicates a worrying level of inheritance

but acceptable according to(Kemerer,

1994)

11 Coupling

Between Object

Classes (CBO)

Coupling or dependency level

in object

3.17 A good value of this metric tells us that it

is easy to find a fault and to fix it easily.

Nesher this mean CBO value remains

below the threshold of 10 (C., 2002).

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1357

12 Weighted

Methods per Class

(WMC)

Sum of cyclomatic

complexities of a class

12,083 If each method has a complexity of 1 in

the code, WMC only counts the number

of methods. The relevance of this metric

is empirically justified in the

article(Dugerdil, May 2005) by stating

that the number of methods and their

complexity is a measure of the effort

associated with the creation of the class

and its maintenance.

SOURCE: AUTHORS

This analysis allowed us to do the static analysis of our software, using tools such as Metrics,

STAN, PMD and to see how our software behaved when we apply a metric from the OO world

such as quality.

Overall, the result is satisfactory, although for some metrics there were classes and methods

that violated the benchmarks. This is how we asked ourselves, what are the good development

techniques that architects and developers should adopt in order to produce quality software,

extensible and open to possible modifications?

The use of design patterns has therefore been a major contribution in the development of Nesher

Ges-Paie to improve its internal and external quality.

Upstream of this static analysis, some of these good development techniques such as design

patterns were used, it is they themselves who are at the origin of these good metric values

obtained.

This is what we cover in the next section, in order to give a clear idea of how they work and

use in different contexts.

2. Optimization of Nesher by designs pattern

2.1. Optimization of the source code by the use of designs patterns

The static analysis carried out on our source code gave us satisfactory values, this is not a

coincidence, although in some place our source code violated some OO programming rules, we

estimated their impact negligible (... viewpoints considered).

As Lehman clearly states: "A program used in a real world environment must necessarily

change otherwise it will gradually become less and less useful in that environment" (Netinbag,

2017). It was therefore essential for us to give a certain tolerance to modifications to our source

code while maintaining an acceptable external quality and meeting the quality standard of

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1358

software used in industry. The use of design pattern has therefore made it possible to respond

to this problem.

To illustrate all this, let's present the different design patterns used in the design of Nesher and

their contributions to the internal and external quality of the software, we will show how we

have pushed the limits of inheritance and show the inherent polymorphism to inheritance.

2.1.1. Design pattern: history and definition

The origin of Designs patterns dates back to the early 1970s with the work of architect

Christopher Alexander. He notices that the design phase in software architecture reveals

recurring problems. He then seeks to resolve all of these problems linked to interdependent

constraints. For this he established a language of 253 patterns, which cover all aspects of

construction (such as how to design a frame) (design-patterns, 2017).

A Design pattern is defined as a solution to a recurring problem in the design of object-oriented

applications. A design pattern then describes the proven solution to solve this software

architecture problem. As a recurring problem we find, for example, the design of an application

where it will be easy to add functionalities to a class without modifying it, without degrading

the quality of its code (increasing the complexity in the methods, violating the constraints of

single responsibility …), Or in the concept “a re factorization”.

2.1.2. Organization of Design patterns

Design patterns are classified into three categories:

• Creation: they allow you to instantiate and configure classes and objects.

• Structure: they allow you to organize the classes of an application

• Behaviour: they allow objects to be organized so that they collaborate with each other.

2.1.3. Presentation of the Design patterns used

In the lines we present some Design patterns used in the software by first making a description

of the problem to which it answers (problematic), then by giving the description of the solution

by UML diagrams (solution) and finally by showing the advantages and limits of this solution

(consequences) on the code.

2.1.3.1. Pattern Strategy

The “Strategy” pattern mainly seeks to separate an object from its behaviors / algorithms by

encapsulating them in separate classes.

This design pattern allows multiple encapsulated and interchangeable algorithms to be defined

dynamically (on the fly).

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1359

• Problematic:

The “Strategy” pattern is used when:

- A problem has several algorithms to solve it.

§ Especially if the algorithms have different efficiencies in different

situations.

- An object can have several different behaviors.

§ Also applicable when different classes are only different in behavior.

- Data that the user should not know ends up in an algorithm.

• Solution:

The solution proposed by this pattern consists in isolating the part of the code which varies the

most and to encapsulate it!
FIGURE 1: UML CLASS DIAGRAM OF THE PATTERN STRATEGY

SOURCE: (WHISMERIL, 2019)

If the algorithms / behaviors are in a class of their own, it is much easier to:

- Finding yourself in the main code

- Remove, add and modify an algorithm / behavior

- Decrease the use of conditional tests

- Eliminate redundancy and cut and paste it

- Increase code reusability and flexibility

- Strong extensibility

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1360

• Consequences:

In the case of Nesher, this pattern was very useful to us in the sense that it allowed us to set up

the MVC pattern that we will present a little below.

Second, the Strategy pattern allowed us to have:

- Satisfactory cyclomatic complexity values for our algorithms because the

algorithms are now selected on the fly without going through several control

structures such as (if, switch,).

- A good index of software specialization, in the sense that this pattern acts on the

value of NORM (number of redefined methods) by significantly reducing it, for

Nesher alone 2 methods out of 1211 in the software are redefined, because this

metric is also proportional to NORM. Using the Strategy interface, the methods

encapsulated in the objects will be used in different contexts without having to

be redefined.

- A good factor of software instability because the dependencies between classes

also decrease because of the low level of coupling (CBO).

- A good cohesion factor (LCOM) between classes because, as announced, this

metric is directly linked to the principle of unique responsibility of a class and

also linked to the principle of inversion of dependency.

2.1.3.2. Pattern Observer

The Observer pattern defines a one-to-many object relationship, so that if an object changes

state, all those that depend on it are informed and updated automatically.

• Problematic:

There are classes with attributes whose values change regularly. In addition, a certain number

of classes must be kept informed of the evolution of these values. It is not kept informed of

changes in these values. Many of the developers like us were faced with this particular problem

when developing a business class and the corresponding display classes.

• Solution:

The solution proposed by this pattern consists in letting the business class inform its display

classes of its changes in values so that they also change state.

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1361

FIGURE 2: UML CLASS DIAGRAM OF THE OBSERVER PATTERN

SOURCE:(G, DESIGN-PATTERNS, 2012)

The UML diagram of the Observer pattern defines two interfaces and two classes. The Observer

interface will be implemented by all classes that wish to have the role of observer(Whismeril,

2019). This is the case of the ObservateurConcret class which implements the update method

(Observable). This method will be called automatically when the state of the observed class

changes.

There is also an Observable interface which should be implemented by classes wishing to have

observers. The ObservableConcret class implements this interface, which allows it to keep its

observers informed. This has as an attribute a state (or several) and an array of observers. The

table of observers corresponds to the list of observers wishing to follow the evolution of its

values. Indeed, it is not enough for a class to implement the Observer interface to be listening,

it must subscribe to an observer via the method addObserver (Observer).

Indeed, the ObservableConcret class has four methods: addObserver (Observer),

removeObserver (Observer), notifyObserver () and getState (). The first two allow,

respectively, to add observers to the listening of the class and to remove them. Indeed, the

Observer pattern makes it possible to dynamically link (make a link during the execution of the

program as opposed to statically linking at compilation) observables to observers. The

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1362

notifyObserver () method is called when the state undergoes a change in value. This warns all

observers of this update (design-patterns, 2017).

It is certainly possible to find in some works a use of this pattern without the two interfaces,

but, we point out that our use of these two interfaces makes it possible to weakly couple the

observable to its observers. Indeed, a design principle is to link interfaces rather than classes in

order to be able to evolve the model easily. Although the use of these two interfaces is not

compulsory, it is strongly recommended to avoid the coupling problem.

Not derogating from this rule of coupling objects through interfaces or abstract classes, Nesher

applies it in its pure and complete sense.

Some code has been removed from the classes to provide some clarity in reading the pattern

setup.

- Observer interface:
public interface Observe {
 public void update ();
 public void updateRunLater ();

}

- Observable abstract class:
public abstract class Subject {
 private Observe observers;
 private Traineeship traineeship ;
 private Service <Observer> service ;

 public void attach (Observe o) {
 this.observers = o;
 }
 public void attach (Internship traineeship) {
 this.traineeship = traineeship;
 }
 public void notifyObservers () {

...
 }
 Protected final void notifyThreadRun () {
 this.load ();
 }
 private void load ()
 {... }
}

• Consequences:

- The observer pattern makes it possible to weakly and dynamically link an

observable to its observers. This solution is weakly coupled which gives it the

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1363

possibility of easily evolving with the model. The LCOM of the code is thus

regulated.

- It is widely used and is one of the essential patterns for the implementation of the

MVC model currently in vogue.

- The last consequence, which of course is no less obvious, is the one advocated by

our Green It, which signals a sharp reduction in energy consumption of around 73%,

hence a strong reduction in the emission of, significant decrease in CPU load and

increased CPU response time increase𝐶𝑂#(grenncodelab, 2017).

2.1.3.3. Pattern Singleton

The Singleton ensures that a class has only one instance and provides a global access point to

that instance.

• Problematic:

Some applications have classes that must be instantiated only once. This is for example the case

for a class which implements a driver for a peripheral, a logging system or even a database

connection class. Indeed, twice instantiating a class serving as driver for a printer or connection

to a database would cause unnecessary overload of the system and inconsistent behavior.

In the case of Nesher, our problem was to create a single connection to the database to avoid

overloading the database server, secure and trace accesses and also to avoid excessive

consumption of resources. This is how we asked ourselves the question:

How to create a class, used several times within the same application, which can only be

instantiated once?

One solution for us was to instantiate the class as soon as the application was launched in a

global variable (accessible everywhere in the program). However, this solution infringes the

principle of encapsulation and has many drawbacks. Because there is no guarantee that a

developer does not instantiate the class a second time instead of using the defined application

global variable. In addition, we have to instantiate this global variable as soon as the application

is launched and not on demand (which can have a significant impact on the performance of the

application). Finally, when we arrive at several hundred global variables, the development

becomes unmanageable, especially since Nesher was developed as a team working

simultaneously.

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1364

• Solution:

As the use of a super global variable is not possible, we thought of using the Singleton design

pattern.

It is to prevent developers from using the constructor of the class to instantiate it. To do this, it

suffices to implicitly declare all the constructors of the class in private.

Once this step is completed, it is possible to instantiate this class only from itself, and create a

static method which will return an object corresponding to the type of the class. With the

advantage that, unlike the constructor, we can control the value that this method will return.

The fact that it is static we can call it without having an instance of this class.

We create a static attribute which will make it possible to store the unique instance of the class.

Then, in the pseudo constructor (static method) we will test if this attribute is null then we create

an instance, if not what the attribute already has an instance of the class. In all cases, the value

of the attribute having the unique instance of the class is returned.
FIGURE 3: UML CLASS DIAGRAM OF THE SINGLETON PATTERN

SOURCE: (G, DESIGN-PATTERNS, 2011)

Source code snippet of the use of this pattern in managing a single database connection with

Nesher.
public class MySQL extends Connection_db
{
 private static DBConfigXMLDAO DbConfigXMLDAO = new DBConfigXMLDAO
(XMLDAOFactory.getfileConfig ());
 private MySQL () { Great(); }
 public static Connection getConnection ()
 {
 for(DBConfig dbConfig : DbConfigXMLDAO.find ()) {
 host = dbConfig.getDbhote ();
 dbuser = dbConfig.getDbuser ();
 dbbase = dbConfig.getDbbase ();
 dbpass = dbConfig.getDbpass ();
 load();
 }
 yew(connection == null) {

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1365

 new MySQL ();
 }

return connection ;
 } }
For the sake of simplicity, we only present one method of the class, the same one is responsible

for acting as a pseudo constructor.

The problem with our way of doing things is that, with multithreading applications, in the

sequence of instructions, a first process can execute the function and find that the connection

attribute is null. A second process running simultaneously also finds that this attribute is zero.

The two processes will therefore each create an instance, we then end up with two attributes of

the instance of connection to the DB.

• Consequences:

- To save resources, we only created one connection object and thus only have a

single instance of it throughout the program.

- This pattern is based on a private constructor associated with a method returning

the instance created in the class itself.

- In order to overcome the problem of multithreading (ability of the program to

launch several processes simultaneously) and end up with several connections

to the database, we just need to use the keyword synchronized in the declaration

of our method for retrieving the instance, but this synchronization is only useful

once. Instead, you could instantiate the object when the JVM loads the class,

before calling it.

2.1.3.4. Pattern DAO (Data Access Object)

This pattern makes it possible to make the link between the data access layer and the

business layer of an application (our classes). It allows better control of the changes likely to

be made to the data storage system; therefore, by extension, to prepare a migration from one

system to another (BDD to XML files, for example…). This is done by separating access to

data (BDD) and business objects (POJO: Plain Old Java Object).

• Problematic:

We have serialized data in a database and we want to manipulate it with Java objects.

However, the company is in the process of restructuring and we don't know if our data is going

to:

- Stay where they are;

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1366

- Migrate to another database;

- Be stored in XML files;

- ...

How can we ensure that we do not have to modify all the uses of our objects? How to

achieve a system which could adapt to future modifications of data carriers? How do we keep

the objects we are going to use as they are?

• Solution:

The solution is to make sure that one type of object is responsible for retrieving the data

in the database and that another type of object (often POJOs) is used to handle this data. We

were inspired by the diagram presented by openclassroms to represent this

solution(openclassrooms, sd).

FIGURE 4: OPERATION OF THE DAO PATTERN

Source openclassroms

These objects which will fetch data from the database must be able to perform searches,

insertions, updates and deletions. Therefore, we make the best use of polymorphism ... by

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1367

creating an abstract class (or an interface) implementing all the aforementioned methods, also

called (CRUD).

In the case of Nesher, we wanted to do a sampling and present the implementation of

the DAO pattern in the software, the following figure shows his UML class diagram:

FIGURE 5: DAO CLASSES

Source: AUTHOR

The DAO class is an abstract class using the notion of genericity, to make our DAO objects ask

the type of objects to serialize.

Source code of the DAO abstract class collected from eclipse:

public abstract class DAO <T>
{
 protected Connection connect ;
 protected boolean status = false ;
 private String message ;

 public String getMessage () { return message; }

 protected void setMessage (String message)
 {
 yew(message ! = null &&!message.isEmpty ())this.message = message ;
 }

 public DAO (Connection connect)
 {
 this.connect = connect ;
 }

 public abstract boolean create (T obj);

 public abstract boolean update (T obj);

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1368

 public abstract boolean delete (T obj);

 public abstract T find (Object obj);

 public abstract ObservableList <T> find ();

}

Source code of the AgentDAO class, we only present the method of creating a new agent to
give an overview of the internal process such as show on the class diagram:

public class DAO Agent extends DAO <Agent>
{
 public AgentDAO (Connection connect) { Great(connect); }

 public boolean create (Agent agent)
 {
 boolean status = false;

 yew (agent.isNew () &&agent.isValid ())
 {
 try
 {
 PreparedStatementprepare=this.connect.prepareStatement (
 "INSERT INTO Agent SET" +
 "matricule =?, numINSS =?, etatCivil?, levelStudy =?, address
=?, email =?, telephone =?, idCategorie =?, name =?, postname =?, firstname =?,
gender =?, birthdate = ?, " "nationality =?, dateE = NOW (), dateM = NOW (), function
= ?, base salary =?, photo =?);
 prepare.setString (1,agent.getMatricule ());
 prepare.setString (2,agent.getNumeroINSS ());
 prepare.setString (3,agent.getCivilState ());
 prepare.setString (4,agent.getStudyLevel ());
 prepare.setString (5,agent.getAddress ());
 prepare.setString (6,agent.getEmail ());
 prepare.setString (7,agent.getTelephone ());
 prepare.setInt (8,agent.getCategorieAgent ());
 prepare.setString (9,agent.getName ());
 prepare.setString (10,agent.getPostname ());
 prepare.setString (11,agent.getName ());
 prepare.setString (12,agent.getGenre ());
 prepare.setString (13,agent.getDateOfBirth ());
 prepare.setString (14,agent.getNationality ());
 prepare.setString (15,agent.getFunction ());
 prepare.setString (16,agent.getBaseSalary ());
 prepare.setString (17,agent.getPhoto ());
 int state = prepare.executeUpdate ();
 yew(state == 1) status = true ;
 }
 catch (SQLException e) {
 e.getMessage ();
 }
 }
 return status ;

 }

}

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1369

For performance and security reasons we used prepared queries. With the PreparedStatement

object.

• Consequences:

- Our base objects are used via Java objects

Nesher interacts with the database by encapsulating access to it and is thus prepared for a

possible migration of the storage system in the event of a change, without having to impact the

business layer of the software.

2.2. Contribution of patterns to the internal and external quality of the software

Design patterns are basically good design practices, proven solutions to recurring problems, a

shared vocabulary for architects and developers to discuss issues, and an effective way for

developers to discuss and share experience.

They make it possible to produce quality software with weak coupling between objects

(components) constituting it, a strong cohesion between objects and a high sensitivity to

modifications of the source code.

The internal quality of a software designed with an intensive use of design patterns, allows to

have a source code conforming to the basic principles in OO (encapsulation, collaboration),

definitions of lightweight classes, easy to understand, to maintain, to reuse, behavior distributed

among classes that have the necessary information, a robust and maintainable system.

Conclusion

Our study has shown that it is, in the field of internal metrics of the object world, relevant to

use some of these metrics in their context. The advantage of the study and the static analysis

carried out is that: a) these metrics have been known for a long time and are well defined in the

literature, b) many tools support them and therefore automate their calculation. This result

therefore offers an immediate perspective to all developers and architects, in order to remain

proactive and anticipate the result of their development through the use of good development

practices. This result constitutes the fundamental contribution of this article. This contribution

takes the form of 3 contributions.

We have identified 12 metrics of the object world. This set of metrics makes sure to sweep the

3 points of view on the internal components of an object-oriented software (class, package, etc.)

as mentioned at the beginning of the second section of this article: internal view (cohesion,

complexity, etc.), view of its interface (Afferent, Efferent, instability, abstraction, etc.), view of

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1370

its interactions in a given application context (Coupling). These three points of view are indeed

useful to the two main stakeholders in the process of developing object-oriented applications:

the developer of software components and the architect of an application that assembles these

components. These metrics also operate at different levels of granularity to cover structural

phenomena in all their variety: class level, package level, component level. Internal metrics

reflect the internal complexity of an application by quantifying its size and internal

dependencies (with class and package granularity). Metrics from the interface point of view

capture the visible characteristics of a software component, that is to say the flow of information

exchanged with its environment and its level of abstraction. Application point of view metrics

quantify the coupling relationships between components of an application in terms of their

number and “thickness”. This is the first contribution of this article. Metrics from the interface

point of view capture the visible characteristics of a software component, that is to say the flow

of information exchanged with its environment and its level of abstraction. Application point

of view metrics quantify the coupling relationships between components of an application in

terms of their number and “thickness”. This is the first contribution of this article. Metrics from

the interface point of view capture the visible characteristics of a software component, ie the

flow of information exchanged with its environment and its level of abstraction. Application

point of view metrics quantify the coupling relationships between components of an application

in terms of their number and “thickness”. This is the first contribution of this article.

Through the static analysis carried out, we were interested in the information conveyed by these

12 metrics on our application (Nesher Ges-Paie). These metrics have shown their usefulness in

internal use by making it possible to build an image of good development practices through the

use of design patterns in the optimization of Nesher.

The optimization of Nesher by the use of design patterns allowed to give it a strong

extensibility, to allow it to evolve easily in different fields of use and all this while reducing the

cost and the maintenance effort.

This optimization reached its peak by the level of instability of its source code and that of its

level of abstraction considered at different level of granularity (package), we noticed that the

Distance from Main Sequence line of different packages does not exceed the critical value of

0.7, and its asymptotism to the referential line connecting point 1 of the abscissa (Instability) to

point 1 of the ordinate (abstraction) inviting us that these two lines will never intersect at infinity

. This is in no way a coincidence. It is undoubtedly an obvious consequence of the use of these

patterns that allowed us to reach the second contribution of this article.

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1371

Without a rigorous discipline of the development team, the risk would be great that the software

developed would be an empty shell with an irregular structure and weakly coherent. This

analysis of good practices was a guarantee of satisfaction for our development teams and users

of Nesher Ges-Paie.

By using at least 7 design patterns, we were able to put in place these good practices which

have optimized Nesher Ges-Paie as a whole, we are focusing here on the Strategy pattern for

example. By this pattern we focused on the three plundered of OO which are: inheritance,

polymorphism and encapsulation.

Through the Strategy pattern we have been able to push back the limits of Inheritance and the

polymorphism which is inherent to it by the use of composition to inheritance on the one hand

and a strong manipulation of the object encapsulation on the other hand. , the realization of this

pattern by interfaces and / or abstract class, disadvantages the dynamic polymorphism and binds

the objects with a weak coupling and a strong internal cohesion between object.

This object encapsulation has made it possible to drastically reduce conditional tests, increase

the extensibility of the source code to modifications, eliminate code redundancy, reduce the

effort of finding oneself in the code in the event of failure and increase code reusability and

flexibility.

In the end, our study allows us to affirm that: "the use of certain internal metrics coming from

the procedural and object paradigm constitutes a relevant and operational tool for developers

and architects in order to define as early as possible the internal quality of their products and

anticipated the result externally ”.

This article can have several extensions and perspectives, the first perspective concerns

orienting this approach on internal metrics towards the theme of refactoring.

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1372

BIBLIOGRAPHY

C., L. (2002). Applying UML and Patterns 2 Edition. Prentice Hall.

design-patterns. (2017). Retrieved from http://design-patterns.fr

Dugerdil, P. (May 2005). Complexity measurement and code maintenance. Univ. Of Applied Sciences.

G, M. (2011, 10-18). Retrieved from design-patterns: https://design-patterns.fr/singleton

G, M. (2012, 09 04). Retrieved from design-patterns: https://design-patterns.fr/observateur

GAUDAN, S. (2007). Doctoral thesis in computer science. Risk management of design faults related to

object-oriented technologies for their use in critical avionics applications. Toulouse, France:

National Institute of Applied Sciences of Toulouse.

Goodman, D. (2013). Software Design Principles (SOLID). Retrieved from davidgoodman.co.uk:

http://davidgoodman.co.uk/tag/solid-principles/

grenncodelab. (2017). Retrieved from https://www.grenncodelab.fr/content/l'implementation-du-

design-pattern-observer-peut-elle-reponde-àl'exigences

Hamza, S. (2014, December 14). Doctoral thesis. A pragmatic approach to measure the quality of

applications based on software components. Brittany, France: UNIVERSITY OF SOUTHERN

BRITTANY.

Kemerer, CS (1994). A metrics suite for object oriented design. In A metrics suite for object oriented

design (pp. 20 (6): 476–493). Software Engineering IEEE Transactions on.

Larive, A. (2015). Source code quality measurement - Algorithms and tools. Retrieved from

http://www-igm.univ-

mlv.fr/~dr/XPOSE2008/Mesure%20de%20la%20qualite%20du%20code%20source%20-

%20Algorithmes%20et%20outils/indice-de-specialisation. html

Martin, RC (2000). Design Principles and Design Patterns. Object Mentor.

McCabe, TJ (1976). A complexity measure. In TJ McCabe. Software Engineering, IEEE Transactions on.

MENGAL, P. (2013). METRICS AND CRITERIA FOR ASSESSING THE QUALITY OF THE SOURCE CODE OF

SOFTWARE. Brussels: unpublished.

Netinbag. (2017, May 04). netinbag. Retrieved from netinbag.com:

https://www.netinbag.com/fr/internet/what-is-software-evolution.html

openclassrooms. (nd). Retrieved from https://www.openclassrooms.com

Smacchia, P. (2013). nDepend Metrics. Retrieved from ndepend.com:

http://www.ndepend.com/Metrics.aspx#RelationalCohesion

Sylvain Chardigny, AS (2008). Quality-driven extraction of a component-based architecture from an

object-oriented system.

Revue Internationale du Chercheur
Août 2021
Volume 2 : Numéro 3

Revue Internationale du Chercheur www.revuechercheur.com Page 1373

W, BB (1981). Software engineering economics.

Whismeril. (2019, May 06). Retrieved from source codes: https://codes-

sources.commentcamarche.net/faq/823-design-pattern-strategy

